

TF-6225 Motion Control User Manual

Laser Motion Control RV1.0

Copyright

Shenzhen Trocen Automation Tech. Co. Ltd. (Hereinafter referred as Trocen) reserves the right to modify the products and product specifications in this manual without prior notice.

Trocen is not liable for any loss or liability arising directly, indirectly, specifically, incidental or consequential due to the use of this manual or this product.

The company has the patent, copyright and other intellectual property rights of the product and its software. Without authorization, it shall not directly or indirectly reproduce, manufacture, process, use this product and its related parts.

Users have the responsibility to pay attention to the design error and establish protection mechanisms. Trocen doesn't accept any responsibility or liability for any damage or loss resulting from improper operation.

Contact Us

Shenzhen Trocen Automation Tech. Co. Ltd.

First Floor, Building 4, Zhiheng Industrial Park, Nantou Pass Second Road,

Nanshan District, Shenzhen City, Guangdong Province, China

Tel: +86-0755-27958262

Fax: +86-0755-27447913-608

Email: qiancheng@sztrocen.com

Website: www.sztrocen.com

Introduction

Thanks for Choosing Trocen Motion Control

In order to feedback customers, we will help you to complete the production of the equipment with first-class quality motion controller, perfect after-sales service and efficient technical support.

More Information about Trocen Products

You could get more information about the company and products on our website <u>www.sztrocen.com</u>, including company profile, product introduction, technical support and the latest release products, etc.

You could call +86 (0755) 27958262 for more information.

Technical Support & After-Sales Service

You could contact technical support and after-sales service by the following ways:

Email: qiancheng@sztrocen.com

Tel: +86-0755-27958262

Fax: +86-0755-27447913-608

Address: First Floor, Building 4, Zhiheng Industrial Park, Nantou Pass Second Road, Nanshan District, Shenzhen City, Guangdong Province, China

Code: 518100

User Manual

By reading this instruction, the users will know the basic composition,

installation and how to use TF-6225.

For Who

This manual is applicable to engineers who have a certain understanding

of laser mechanical automation and electrical circuits.

Main Content

The composition, installation and use of TF-6225 are introduced in detail

Relevant Document

《LaserCAD User Manual》

Content

1. Product Introduction8
1.1 System Introduction8
1.2 Terms and Explanation9
1.3 Unpack
1.4 Panel Preview11
1.5 Buttons12
1.5.1 Function Keys12
1.5.2 Direction Keys16
1.5.3 Number Keys17
1.6 Wiring Board20
1.6.1 Wiring Board Appearance21
1.6.2 Port Instruction22
2. LaserCAD Installation35
3. Simplified Installation
3.1 Hardware Connection36
3.2 Input Test37
3.3 Set the Origin Point of Machine
3.4 Key Direction
3.5 Distance Per Pulse
3.6 Hard Limit and Range40
3.7 Floating Head Calibration41
4. Main Interface Preview42

5. Main Page Function Introduction	44
5.1 File	44
5.1.1 Document Params Settings	44
5.1.2 Layer Params Settings	46
5.2 Working Property	48
6. System Menu	50
6.1 U Disk Files	50
6.1.1 Work Files	52
6.1.2 Upgrade Files	54
6.2 Jog Control	54
6.3 Height Control Parameters	55
6.3.1 Technological Parameters	57
6.3.2 Normal Configuration Parameters	58
6.3.3 Z-Axis Motion Parameters	59
6.3.4 Floating Head Calibration	61
6.4 Motion Parameters Settings	63
6.5 Common Parameters Settings	66
6.5.1 Work Mode	66
6.5.2 Common Parameters	68
6.5.3 Axis Speed Parameters	69
6.5.4 Rotate Engraving & Cutting	71
6.7.5 CCD Config	75
6.6 Network Settings	76

	6.7 Language	78
	6.8 System Version	78
7. N	Ianufacture Params Settings	81
	7.1 Axis Parameters	81
	7.2 Laser Parameters	84
	7.3 I/O Parameters	86
	7.4 Auto Reset Settings	87
	7.5 Normal Settings	89
8. F(QA	91
Арр	endix 1. Wiring Diagram of Servo Driver	92
	1. Panasonic A5 High Speed Pulse Wiring Diagram	92
	2. Yaskawa Wiring Diagram	93
	3. Delta A Series High Speed Pulse Wiring Diagram	95
	4. Sanyo R Series Wiring Diagram	97
	5. Schneider 23A High Speed Pulse Wiring Diagram	
	6. Fuji A5 Series Wiring Diagram	
	7. Mitsu Series Wiring Diagram	
Арр	endix 2. Wiring Diagram of Laser	
	1. IPG-YLR Series Diagram	
	2. SPI-500W R4 Diagram	
	3. Raycus Laser Diagram	105
	4. Max Laser Diagram	

1. Product Introduction

1.1 System Introduction

TF-6225 is a universal motion controller for laser cutting, laser engraving and other fields developed by Shenzhen Trocen Automation Tech co., LTD. This controller is compatible with various brands or power of laser with CO2 laser in low/medium power cutting metal/nonmetallic materials, based on fiber laser cutting and integrated with auto height-sensing system, used for fiber laser cutting, metal/nonmetallic materials cutting and multi-metal materials in various thickness such as metal cutting, gifts, advertising and kitchenware. This system is used by LaserCAD software and motion controller, which greatly improves the production efficiency and reduces the production cost.

Features of LaserCAD

- User-friendly and versatile.
- Support CorelDraw, Auto CAD and other professional drawing software.
- Support the file format: AI, PLT, DXF, SVG, PDF, NC, DST, DSB, UD5, BMP, GIF, JPG, JPEG, PNG.
- Simple graphics drawing function.

Features of Wiring Board

• High DSP, quick calculating and optimal algorithm.

- 4.3" color TFT LCD display with concise operation interface.
- Optical coupler, anti-electromagnetic interface and system stability.
- Faster reading files under USB, U Disk and network.
- Auto height-sensing with 0.1mm accuracy.
- One-click calibration.

1.2 Terms and Explanation

Term	Explanation
LaserCAD Software	LaserCAD is a complementary software with auto typesetting for laser motion control.
TFT LCD Panel LCD Panel Control Panel Panel (Mainboard)	4.3" color TFT LCD control panel. The panel is used for specific display and control operations and it is an important part of the system.
Wiring board (Baseboard) Hardware	The baseboard is the control board of the integrated signal (input and output) control and the motor drive connection. Includes: mainboard, wiring board, wire and so on.

Table1-2-1 Terms and Explanation

1.3 Unpack

After receiving the product, please confirm whether the product and accessories are complete. If there is a lack of accessories, please contact the after-sales service of Trocen company.

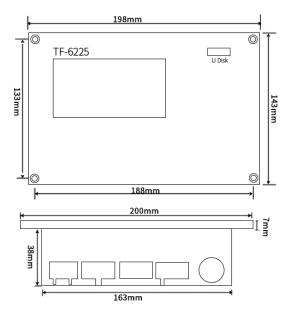
Name	me Appearance Introduction	
Panel (Mainboard)		The panel (mainboard) of TF-6225.
Wiring Board		The wiring board of TF-6225.
USB Cable (3m)	O	Connect computer and panel by USB.
Network Cable (5m)		Connect computer and panel by network.
CN1 (1.6m)	Q	Connect the CN1 port of main board and panel.
DB9 (1.6m)		Connect the CN2 port of main board and panel.

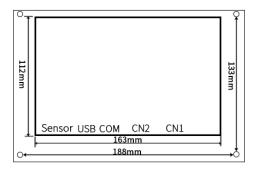
TF-6225 Motion Control User Manual

8 PIN (1m)	Q.	Patch cord with USB and network port.
15cm Copper Cable (0.15m)		Connect amplifier.
Amplifier Cable (10m)		Connect amplifier and main board.

1.4 Panel Preview

There are LCD display, soft keys and U disk slot on panel.


Figure1-4-1 Panel Preview



WWW.SZTROCEN.COM

Figure1-4-2 Size of Main Board

1.5 Buttons

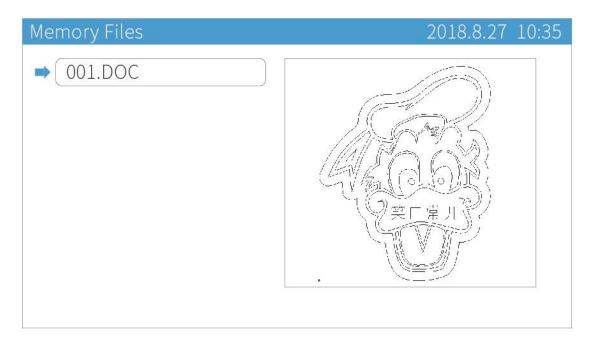
According to the different use of keys, all keys are roughly divided into three categories: function keys, number keys and direction keys.

1.5.1 Function Keys

Function key is designed to directly realize a specific operation function.

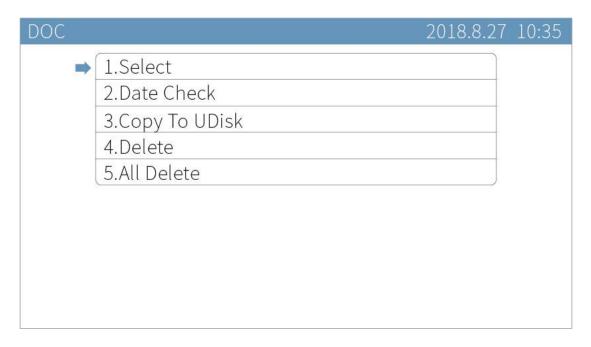
Name	lcon	Instruction
Reset	Reset	No matter what the state of the machine is in, pressing this button will make it enter the resetting state.

Table1-5-1 Function Keys Instruction


Follow ON/OFF	Followon/off	Switch follow function.
Menu	Menu	Show the main menu.
File	File	Browse the files stored in the control board.
Shift	Shift	Combine function key.
Laser	Laser	Test usage. Press the key, the laser tube will give out light. It's used to adjust optical path.
Box	Box	Frames the working area from the origin point of the current file.
Origin	Origin	Setting machine's starting point of the current file.
Stop	Stop	Once pressed, the machine will stop its current function and move back to its origin. Press 【Stop】 + direction keys to switch the speed of axis movement, quick to slow or slow to quick.
Start/Pause	Start/Pause	Pause the machine and keep it stay at location. Press again to resume.

Esc	Esc	Exit edit mode (Exit cursor). Return to previous menu.
Enter	Enter	Enter edit mode (Start cursor). Confirm the current operation.
Hand		The speed switching (fast/slow) of moving axis manually.

On the main page, press **[**File **]** and you could see the memory files stored in the mainboard.


Figure1-5-1 File Interface

Move cursor to the file you need, press [Enter], you could set the file parameters.

Figure1-5-2 File Parameters Setting Page

- Move cursor to [Select], press [Enter] and set current file as work file.
- Move cursor to 【Data Check】, press 【Enter】. If the graphics is the same as that in PC, the system will prompt "File Data OK!", then the graphics will be allowed to process. If not, the machine won't process this graphics.

Figure 1-5-3 File Format Test

Laser Motion Controller TF-6225	2018.8.27 10:35
File Date OK!	

Users could set other parameters as need.

1.5.2 Direction Keys

● 【↑】【↓】【←】【→】

They are used to move the motion axis and cursor, also used to modify options in the current view.

• [z †] / [o] [z ↓] / [c]

Move cursor when the direction keys $(\uparrow) (\downarrow) (\leftarrow) \rightarrow$ are

occupied, and these keys are used to move Z axis directly.

1.5.3 Number Keys

Used to modify parameter values. They are also designed to directly realize a specific operation function on the main page.

Name	lcon	Instruction
1	1	Enter Technological Parameters interface.
2	2	Test tracking function.
3	3	Adjust position slightly.
5	5	Check signal output of I/O ports manually.
7	7	Continue cutting from previous position.
9	9	Adjust position slightly.

On the main page, press 【1】 to enter *Technological Parameters* interface. Move cursor with 【↑】【↓】 to select a sub-option, press number keys to modify parameters and press 【Enter】 to save settings.

Gas	Air
Punch Power(%)	80.0
Punch Pressure(%)	80.0
Punch time-delay(ms)	0100
Punch height(mm)	002.5
Waiting height(mm)	015.0

Figure1-5-4 Technological Parameters Interface

2. On the main page, press 【2】 and press 【Enter】 to start tracking. Manually raise and lower the steel plate, if the laser head moves following the steel plate automatically, the tracking function is normal, or you need to calibrate again.Press [ESC] and return to the main page.

Figure1-5-5 Tracking Interface

Laser Motion Controller TF-6225	2018.8.27 10:35
Press 【Enter】Start Tracking, Press 【E	sc】Stop Tracking.

3. On the main page, press **[**5**]** to enter *Manual To Control IO* interface,

then operate as following diagram to test I/O ports manually.

Manual To Control IO	2018.8.27 10:35
 Manual To Control IO 1: OUT1(Globel Work) 2: OUT2(Air Switch) 3: OUT3(Oxygen Switch) 4: OUT4(Nitrogen Switch) 5: OUT5 6: OUT6 7: OUT7(Clip Material) 8: OUT8(Feeding) 9: OUT9 10: OUT10 	
()

Figure1-5-6 I/O Test Interface

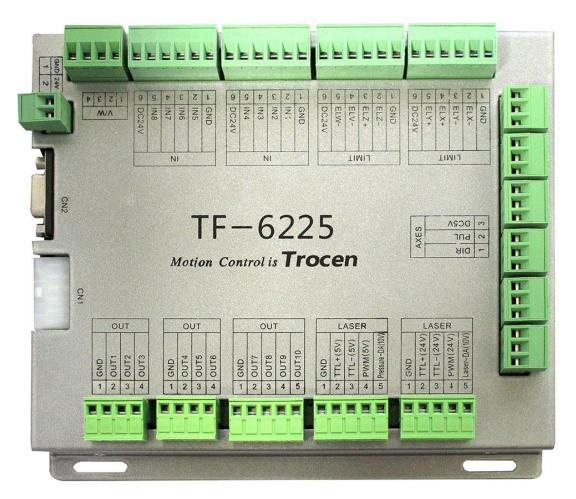
4. On the main page, press 【7】 and press 【Enter】 to continue cutting

or press **[**ESC**]** to quit.

Figure1-5-7 Continue Cutting Interface

Laser Motion Controller TF-6225	2018.8.27	10:35
Continue to work?		

1.6 Wiring Board


The panel and other parts of machine are connected by wiring board. The components as below:

- Connect motor driver
- Detection of motion axis limit signal
- Input signal detection
- Output IO control signal and corresponding power supply

1.6.1 Wiring Board Appearance

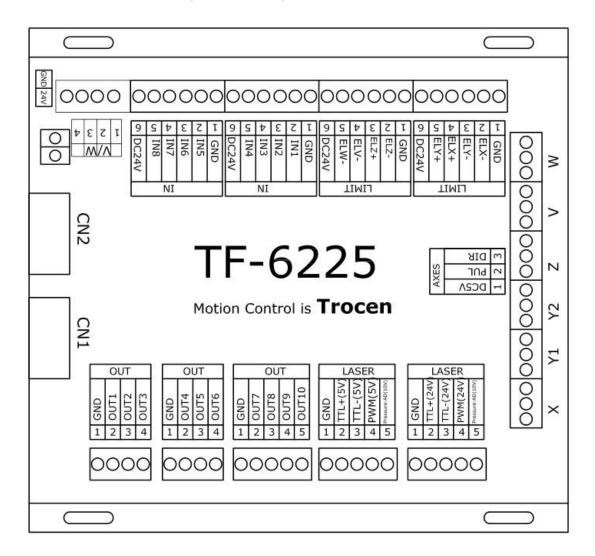

ROCEN

Figure1-6-1 Wiring Board Appearance

Figure1-6-2 Wiring Board Ports Introduce

1.6.2 Port Instruction

1.6.2.1 Power Supply Port

The power supply ports provide power to wiring board and panel. Please pay more attention to polarity when connect them. Don't make the polarity reverse.

Pin	Name	Introduction	
1	+24V	24V positive polarity.	
2	GND	Negative pole.	

Table1-6-1 Instruction of Wiring Board Power Supply Port

1.6.2.2 Port of Panel and Wiring Board

Connect panel and wiring board with CN1 and CN2 cables.

Name	Introduction
CN1	Connect CN1 port of panel and wiring board with CN1 cable.
CN2	Connect CN2 port of panel and wiring board with DB9 cable.

Table1-6-2 Port of Panel and Wiring Board

1.6.2.3 Signal Input

There are two groups of signal input ports.

Table1-6-3 Wiring Board Signal Input Port Instruction

	PIN	Name	Instruction
	1	GND	Power ground
IN	2	IN1	Door open protection signal (This function needs to be turned on in the panel to be effective).

	3	IN2	Foot switch (This function needs to be turned on in the panel to be effective).
	 4 IN3 5 IN4 6 DC24V 		Driver alarm signal.
			Reserved
			Output DC voltage (24V)
	1 G	GND	Power ground
2	IN5	Water protection.	
IN	3 IN6	Reserved	
4	4	IN7	Reserved
	5	IN8	Reserved
	6	DC24V	Output DC voltage (24V)

Wiring diagram of signal input:

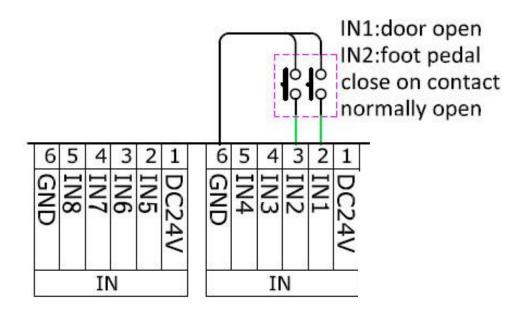


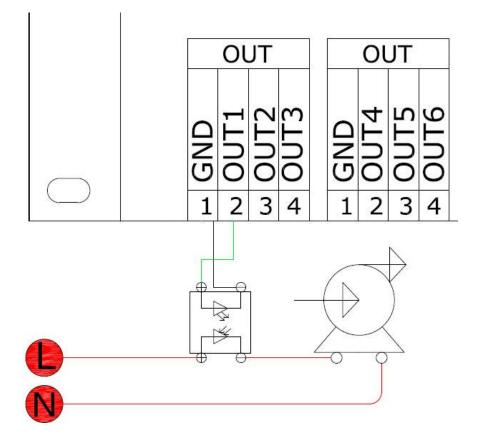
Figure1-6-3 Wiring Diagram for Signal Input

1.6.2.4 Signal Output

There are 3 groups of output ports to supply power and control signals. If you choose OUT2 (Blow when laser is power on), you must set the parameters of [Blow Open Delay] or [Blow Close Delay] on the *Common Parameter* interface, with the minimum value of 0.01.

Table1-6-4	Output	Port	Instruction
------------	--------	------	-------------

	PIN	Name	Instruction
	1	GND	Power ground (OUT).
OUT	2	OUT1	Blowing signal (blow all the working time): OUT1 Blowing when output is high logic level.


			OUT1 Do not blow when output is low logic level.
	3	OUT2	Blowing signal (blow when laser is powering on): OUT2 Blowing when output is high logic level. OUT2 Do not blow when output is low logic level.
	4	OUT3	Blowing signal (blow O2 when laser is powering on): OUT2 Blowing when output is high logic level. OUT2 Do not blow when output is low logic level.
	1	GND	Power ground (OUT).
OUT	2	OUT4	Blowing signal (blow N2 all the working time): OUT2 Blowing when output is high logic level. OUT2 Do not blow when output is low logic level.
	3	OUT5	Reserved
	4	OUT6	Reserved
	1	GND	Power ground (OUT).
OUT	2	Ουτ7	Stuffing signal.
	3	OUT8	Reserved
	4	OUT9	Feeding signal
	5	OUT10	Reserved

Output signals control laser blowing generally. The wiring diagram is

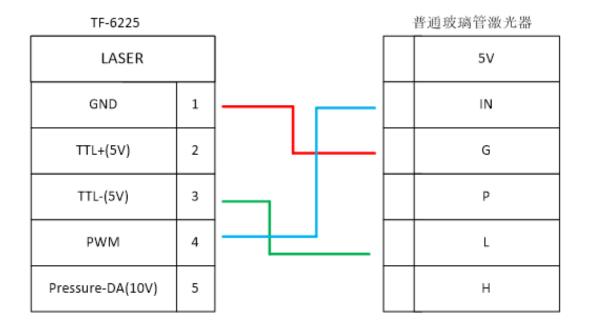
shown below (blow all the working time).

Figure1-6-4 Blowing Control Diagram

1.6.2.5 Laser Power Supply Port

The wiring board provides 2 groups of laser output control ports.

	PIN	Name	Instruction
LASER	1	GND	Power ground.
	2	TTL+(5V)	Laser switch signal, 5V high level light output.
	3	TTL-(5V)	Laser switch signal, 5V low level light output.



	4	PWM(5V)	Digital signal. The output voltage is 0-5V, and it will change according to the power.
	5	Pressure-DA (10V)	Air pressure control, 0-10V analog signal.
LASER	1	GND	Power ground.
	2	TTL+(24V)	Laser switch signal, 24V high level light output.
	3	TTL-(24V)	Laser switch signal, 24V low level light output.
	4	PWM (24V)	Digital signal. The output voltage is 0-24V, and it will change according to the power.
	5	Laser-DA (10V)	Air pressure control, 0-10V analog signal.

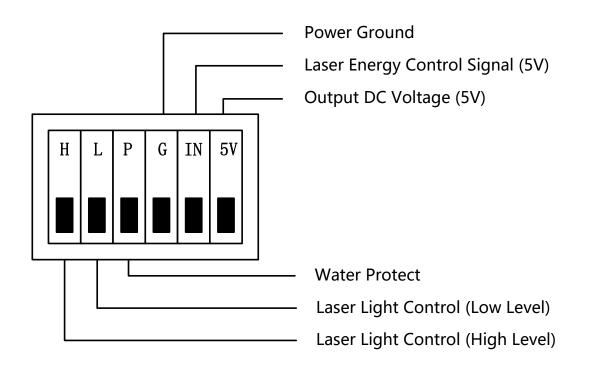

Different lasers have different connection modes. Take ordinary glass tube laser as example. The optical signal of ordinary glass tube laser is 5V, and set low level for light emitting. The power signal PWM of mainboard is connected to the IN pin of laser power source and TTL to the L pin of laser power source. All signals have uniqueness, which is connected to this group of signals, other pins do not need to be connected. For the RF tube laser power supply, only connect the PWM of the main board to the IN pin, GND to G pin, and no need to connect TTL pin. <u>Please refer to Appendix 2</u> <u>of this article for the connection of different types of lasers.</u>

Figure1-6-5 Ordinary Glass Tube Laser Diagram

Figure1-6-6 Pins of Laser Power Source

If the laser light control signal is low level, connect the L pin of laser power,

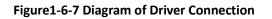
and if the laser light control signal is high level, connect the H pin of laser power.

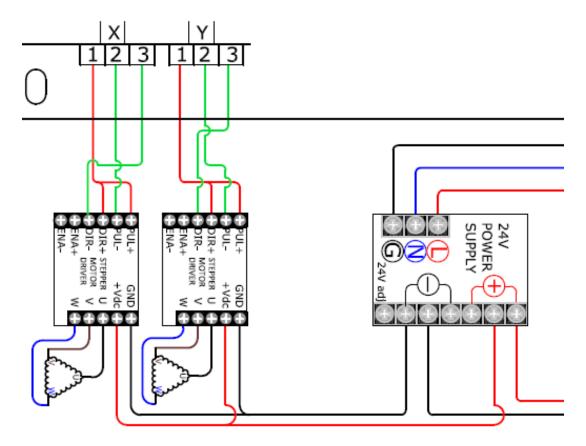
1.6.2.6 Motor Drive Control Port

The wiring board can provide up to 6 motor driver connections, and users can choose step driver or servo driver according to the need. The servo driver has higher control accuracy than step driver. Users can choose the appropriate driving mode according to the usage scenario, cutting precision requirements and cost factors. We take the step driver as an example. <u>Various types of servo driver wiring diagram, please refer to Appendix 1 of this article.</u>

Y1 and Y2 can be used to control Y axis. Users can choose single or double motors for Y axis.

	PIN	Name	Instruction
x	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)
Y1	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)


Table1-6-6 Motor Driver Co	onnection Instruction
----------------------------	-----------------------

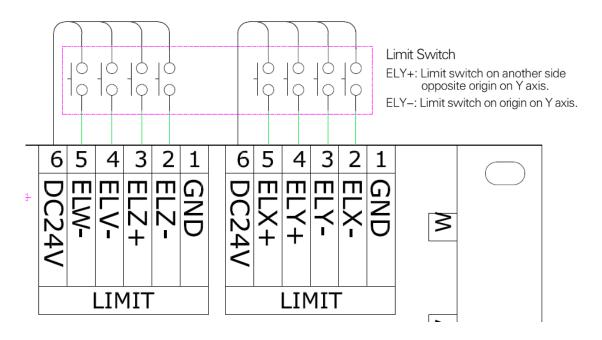


Y2	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)
z	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)
v	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)
w	1	DIR	Direction signal
	2	PUL	Pulse signal
	3	DC5V	Output DC voltage (5V)

The diagram below shows the connection of step driver.

1.6.2.7 Limit Signal

The wiring board provides 5 sensor limit signal access. Each axis supports maximum and minimum coordinate limit signal input. This system supports working range limitation, so users do not need to install hard limit sensor, just set the [Range] parameter on the *Axis Parameters* page. More details about [Range], please refer to the Chaper 3.6 of this article.

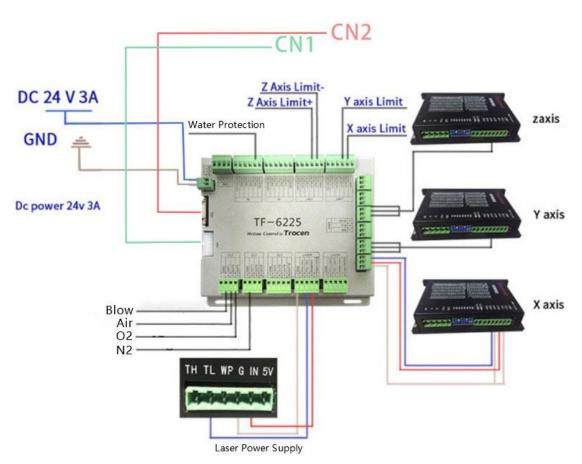

Table1-6-7 Limit Signal Input

	PIN	Name	Instruction
	1	GND	Power ground.
	2	ELX-	The origin limit of the X axis. The input signal of origin limit sensor, when the X axis moves to the minimum coordinate position (zero position).
	3	ELY-	The origin limit of the Y axis. The input signal of origin limit sensor, when the Y axis moves to the minimum coordinate position (zero position).
Limit	4	ELX+	The hard limit of X axis. The input signal of hard limit sensor, when X axis moves to the maximum coordinate position.
	5	ELY+	The hard limit of Y axis. The input signal of hard limit sensor, when Y axis moves to the maximum coordinate position.
	6	DC24V	Output DC voltage (24V).
Limit	1	GND	Power ground.
	2	ELZ-	The origin limit of the Z axis. The input signal of origin limit sensor, when the Z axis moves to the minimum coordinate position (zero position).

	3	ELZ+	The hard limit of Z axis. The input signal of hard limit sensor, when Z axis moves to the maximum coordinate position.
	4	ELV-	The origin limit of the V axis. The input signal of origin limit sensor, when the V axis moves to the minimum coordinate position (zero position).
	5	ELW-	The origin limit of the W axis. The input signal of origin limit sensor, when the W axis moves to the minimum coordinate position (zero position).
	6	DC24V	Output DC voltage (24V).

Figure1-6-8 Diagram of Limit Signal

2. LaserCAD Installation


You can go through 《LaserCAD User Manual》 for more details about installation and how-to-use LaserCAD.

3. Simplified Installation

The content of this chapter is mainly about the hardware initial installation of the product and the setting of basic software parameters. Please refer to the following chapters for the detail settings and descriptions of other parameters.

3.1 Hardware Connection

Figure3-1-1 Integral Wiring Diagram

- Figure 3-1-1 shows the diagram of ordinary glass tube laser. <u>The</u> <u>diagrams of other kinds of lasers</u>, please refer to the content of Appendix 2.
- Connect the blow control ports to corresponding electromagnetic valves to control blow.
- Connect the axis limit ports to corresponding axis limiters.
- Please <u>refer to the Chapter 1.6.2.6</u> to know more detail about X/Y/Z/V/W motor driver connection.

3.2 Input Test

On the main page, press **[**Stop **]** and press **[**Menu **]** two times at the same time, you will see the *Input Test* interface.

			2018.8.27 10:3
X-限位	1	IN2	1
X+限位	1	IN3	1
Y-限位	1	IN4	1
Y+限位	1	IN5	1
Z-限位	1	IN6	1
Z+限位	1	IN7	1
V-限位	1	IN8	1
W-限位	1		1
IN1	1	t	1

Figure3-2-1 Input Test Interface

According to different types of sensors, you could choose metal products

or other shielding objects to close to the sensors in order to detect whether the signals changes, so as to confirm whether the wiring is accurate and effective.

3.3 Set the Origin Point of Machine

Connect machine and wiring board as Figure3-1-1. Power on and observe the motion of axis. If the axis moves random, please press 【Stop】at once. Check your installation and wiring of limiters, if no mistake, then modify the direction of origin point and reset machine.

On the main page, press [Stop] and [Shift] at the same time to enter the *Manufacture Parameters Settings* page. Users could set axis parameters (Datum direction/Key direction/Limit Polarity and so on) on the *Axis Parameters* page.

arameters	2018.8.27 1
Distance Per Pulse (um)	06.500000
Valid Pulse Edge	Failling Edge
Datum Direction	Negative
Key Direction	Negative
Limit Polarity	Negative
Range (mm)	00500
Start Speed (mm/s)	15.0
Max Acc (mm/s2)	10000
Max Speed (mm/s)	0500.0

Reset the machine, and observe the motion direction of axis again. Before start, please make sure to enable the axis auto reset function. <u>Detail</u> settings refer to Chapter 7.4.

3.4 Key Direction

On the main page, press $[\uparrow] [\downarrow] [\leftarrow] [\rightarrow]$ to move motion axis, and check whether the motion direction is the same as key direction. If not, please modify the [Key Direction] on the axis parameters page.

3.5 Distance Per Pulse

Distance per pulse refers to the actual distance of motion axis for each pulse instruction sent by the controller. The calculation is as below and take X axis as example.

- Open the XY AutoReset I function, and reset machine, then mark the current position of laser head with A.
- 2. On the main page, press 【Menu】 and enter the Jog Control page. Set the 【Jog Distance】 to 200mm as example. Then press 【Enter】 to save your modification. If you did not set the 【Range】 on Axis Parameters page, please do not set the 【Jog Distance】 value too large.
- On the Jog Control page, move cursor to 【X/Y Jog】, then press direction key (【←】/【→】) one time to make the laser head move a jog distance on the X direction. Mark the current position of laser head with B.

- Measure the distance between A and B, then input the value into [Actual Length].
- 5. On the main page, press 【Stop】 + 【Shift】 at the same time to open the *Manufacture Params Settings* page. Then move cursor to 【Axis Parameters】 option and press 【Enter】. Then open the *X Axis Parameters* page and move cursor to 【Distance Per Pulse】, press 【Enter】. Input 200mm into【Expected Length】and input the distance between A and B into 【Actual Length】. Then press 【Enter】, the distance per pulse of X axis will be calculated.
- 6. The calculation methods of other axis are the same as X axis.

When the pulse distance value of any axis is close to or less than 1, the pulse distance can't be adjusted and is always 1. Users need to adjust pulse of motor driver first, then measure the distance per pulse again. The recommended pulse distance value is 5 or more.

3.6 Hard Limit and Range

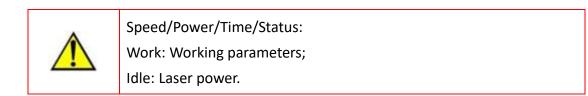
On the main page, press 【Stop】 + 【Shift】 at the same time to open the *Manufacture Params Settings* page. Then move cursor to 【HardLimit Settings】 and press 【Enter】, users can enable or disable the hard limit parameters. TF-6225 supports range function, so users do not need to install hard limit sensors, just need to set the 【Range】 parameters on the relevant axis parameters page.

Set the distance per pulse of X/Y/Z/v/W axis according to the content of

the Chapter 3.5. Then move motion axis to the maximum distance towards positive direction. You can set the coordinate value on the panel as [Range].

3.7 Floating Head Calibration

The purpose of floating head calibration is to measure the capacitance and position relationship between floating head and plates. The float must be calibrated before cutting, otherwise the machine cannot start to work. During calibration process, it is necessary to ensure that the z-axis travel distance is greater than 20mm, otherwise, the calibration will fail. <u>Please refer to the Chapter 6.3.4 of this manual for detail operation of floating head calibration.</u>


Before floating head calibration, please confirm that the distance per pulse of Z axis has been accurately input. If the distance per pulse is wrong, the calibration may fail.

4. Main Interface Preview

Lase	er Motion Contro	oller TF-6225	5	2018.8.2	7 10:35
			File		TEST
	Speed (n	nm/s)	200.0		
	Power (%	6) 50	0.0 40.0		
	Pressure	(%)	50.0		
	Track He	ight (mm)	1.0		
	「「「美山芹		Track		On
		Time	00	0:00:34	
		Status	Idle	:Faster	
X	0.0)(Y	0.0 Z	250.0 Signa	l	0

Figure4-1 Main Interface

Table4-1 Main Interface Introduce

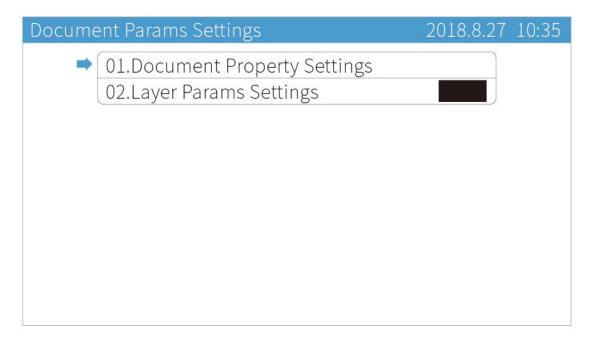
Name	Instruction	
Top Bar	Display the type of control card, local date and time.	
File	Display the file name currently being processed.	
Speed (mm/s)	Displays the work speed of this current file (Related to work state).	

Power (%)	Power when cutting materials (Related to work state).		
Pressure (%)	Pressure when cutting materials (Related to work state).		
Track Height (mm)	The distance between cutting head and material.		
	Switch state by function key 【Follow ON/OFF】:		
Track	Cutting metal materials —— ON;		
	Cutting non-metal materials —— OFF.		
Time	Display how long the machine has been working.		
	Display the work state of machine, Work, Idle or Pause.		
Status	The processing progress of the graphics will be displayed as		
	percentage at the state of working.		
X/Y/Z	The X/Y/Z axis coordinate of working machine.		
	The strength of copper plate signal that amplifier detected and		
	the normal value is about 70,000:		
Signal	Normal: The last two numbers change in the value;		
	Abnormal: The first two numbers change in the value;		
	Zero: When the value becomes zero, it means the equipment		
	damage, etc.		

5. Main Page Function Introduction

5.1 File

5.1.1 Document Params Settings


On the main page, press [Enter] to make the file name highlighted as shown below. Then press [Enter] to open *Document Params Settings* interface.

Laser Motion Controller TF-6225	2018	3.8.27 10:35
	File	TEST
	Speed (mm/s)	200.0
	Power (%)	50.0 40.0
M Co (SA)	Pressure (%)	50.0
(TACOR)	Track Height (m	nm) 1.0
(一葉日常ナマジ	Track	On
	Time	00:00:34
	Status	Idle:Faster
X 0.0 Y 0.0 Z 25	50.0 Signal	0

Figure 5-1-1 Select File Name

Figure 5-1-2 Document Params Settings

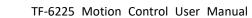
Move the cursor to 【Document Property Settings】, press【Enter】. Press

direction keys to move cursor, press number keys to modify parameters,

and press [Enter] to save settings.

Figure 5-1-3 Set Document Pr	roperty
------------------------------	---------

Set Document Property	2018.8.27 10:35
Repeat Count	10000
Repeat Delay (s)	000
Feed Distance (mm)	0000
X Count	00001
Y Count	00001
X Size (mm)	97.2
Y Size (mm)	121.7



			
Name	Instruction		
Repeat Count	Machine repeat working times.		
Repeat Delay (s)	The interval between the initial file being finished and the next		
Repeat Delay (s)	one of the same.		
Feed Distance			
(mm)	Distance of each movement of the feeding axis.		
X Count	The number of graphics s processed by machine in the X		
	direction.		
Y Count	The number of graphics s processed by machine in the Y		
reduit	direction.		
X Size (mm)	The size of graphics in X direction.		
Y Size (mm)	The size of graphics in Y direction.		

5.1.2 Layer Params Settings

On the *Document Params Settings* page, move cursor to 【Layer Params Settings】 and press 【Enter】. On the *Layer Params Settings* page, press direction keys to move cursor, press number keys to modify parameters, press 【Enter】 to save settings.

WWW.SZTROCEN.COM

During cutting current layer, if the cutting lines are uneven (different cutting depth), the maximum and minimum power of the laser head shall be adjusted to ensure the best cutting effect. If the maximum and minimum power is set too high, the cutting material may be damaged. If set too low, may cause incomplete cutting. Users could set appropriate maximum and minimum power values according to different cutting materials.

Figure 5-1-4 Layer Params Setting

Layer Pa	arams Settings	2018.8.27 10:35
	Work Mode	Cut
⇒	Speed (mm/s)	0300.0
	MaxPower (%)	50.0
	MinPower(%)	40.0
	Pressure (%)	50.0

Table5-1-2 Layer Params Setting Instruction

Name	Instruction
Work Mode	The mode of processing graphics.
Speed (mm/s)	The speed of processing graphics.

Max Power (%)	The max power of laser head (working power).
Min Power (%)	The min power of laser head (turning power).
Pressure (%)	Blowing pressure value of processing graphics.

5.2 Working Property

On the main page, press [Enter] to make the cursor highlighted and move cursor to [Speed]. Press [Enter] to open *Set Laser Power While Idle* page.

Laser Motion Controller TF-6225	2018	3.8.27 10:35
	File	TEST
	Speed (mm/s)	200.0
A CARKE	Power (%)	50.0 40.0
(MIC Solars)	Pressure (%)	50.0
	Track Height (m	nm) 1.0
	Track	On
	Time	00:00:34
· · ·	Status	Idle:Faster
X 0.0 Y 0.0 Z 25	50.0 Signal	0

Figure 5-2-1 Select Speed Option

Press direction keys to move cursor, press number keys to modify parameters, and press [Enter] to save settings.

Fiugre5-2-2 Idle Laser Power Setting Page

Set Las	er Power while Idle	2018.8.27 10:35
-	Speed(mm/s)	0200.0
	MaxPower (%)	50.0
	MinPower(%)	40.0
	Pressure(%)	50.0
	Track Height(mm)	01.0

Table5-2-1 Idle Laser Power Instruction

Name	Instruction	
Speed	The working speed of machine.	
Max Power (%)	Laser power.	
Track Height	The distance between cutting head and material	
(mm)	The distance between cutting head and material.	

6. System Menu

6.1 U Disk Files

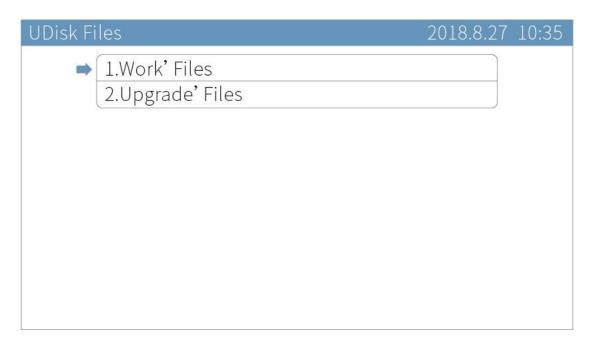

Insert a U disk into the U disk slot on the panel. If your U disk has a "light indicator" (shows connectivity) and shows that it's connected, press [Menu] to enter the main menu, move the cursor to [U Disk Files] then press [Enter] to enter U disk files management.

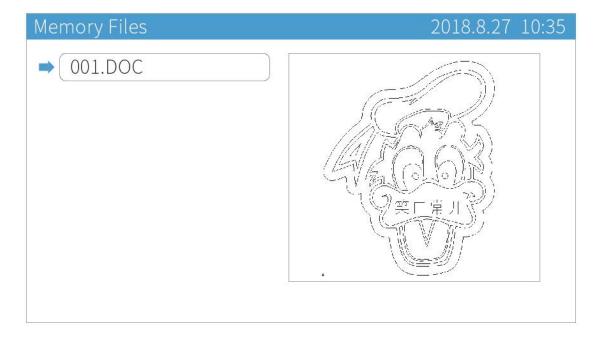
Figure6-1-1 Main Menu Interface

Main Me	enu	2018.8.27 10:35
-	01.UDisk Files	
	02.Jog Control	
	03.Height Control Parameters	
	04.Motion Parameters	
	05.Common Parameters	
	06.Network Settings	
	07.Language	
	08.System Version	

Figure6-1-2 U Disk Files

If the U disk can't be read, you will see the interface below.

Figure6-1-3	No U Disk Int	erface
-------------	---------------	--------


Laser Motion Controller TF-6225	2018.8.27 10:35
No UDisk!	

6.1.1 Work Files

Move the cursor to **[**Work Files **]** and press **[**Enter **]**. On the panel, the working file in the U disk will be presented. The right side shows the working file previewing. Press **[** \uparrow **]** \downarrow **]** to move cursor and press **[**Enter **]** to copy the working file from U disk to main board storage.

Figure6-1-4 U Disk Work Files List

	The working file in the U disk is saved with a suffix of UD5. Files other
	The working file in the U disk is saved with a suffix of UD5. Files other than the ".UD5" file extension will not readable.

6.1.2 Upgrade Files

Move cursor to 【Upgrade Files】 and press 【Enter】. Move the cursor to

the file you need, press [Enter] then it will start the upgrading process.

Figure6-1-5 Upgrade Files

Upgrade' Files	2018.8.27 10:35
⇒ 001.181101P1.UG5	

Don't turn off the power during upgrade, otherwise it will cause damage to the mainboard. The upgrade will take about 30s. After finishing upgrade, the mainboard will reset automatically.

6.2 Jog Control

On the main page, press [Menu], move cursor to [Jog Control] and press

[Enter] to enter *Jog Control* page. Then press number keys to modify

the distance. Do not set too large 【Jog Distance】, please make sure it within the working range.

On the Jog Control page, press number keys to modify the jog distance,

press $Z \uparrow Z \downarrow T$ to move cursor, press direction keys $\uparrow Z \downarrow T \downarrow T$

The jog control can move axis accurately and adjust the distance per pulse

of axis. Please check the Chapter 3.5 to know more about distance per

pulse.

Fiugre6-2-1 Jog Control Interface

Jog Cont	trol	2018.8.27	10:35
	Jog Distance (mm) X/Y/Z/U Jog	00000.5	

6.3 Height Control Parameters

On the main page, press [Menu] and move cursor to [Height Control Parameters]. Press[Enter]. Move cursor to [Technological Parameters] and press [Enter] to open *Height Control Parameters* page. On the main

page, press number key [1], you can open the *Height Control Parameters*

page directly.

Figure6-3-1 Height Control Parameters

Height (Control Parameters	2018.8.27	10:35
	01.Technological Parameters 02.Normal Configuration Parameters 03.Z-Axis Motion Parameters 04.Floating head Calibration(No Cali		

6.3.1 Technological Parameters

Press direction keys to move cursor, press number keys to modify parameters and press [Enter] to save settings.

Gas	Air
Punch Power(%)	80.0
Punch Pressure(%)	80.0
Punch time-delay(ms)	0100
Punch height(mm)	002.5
Waiting height(mm)	015.0

Figure 6-3-2 Technological Parameters Setting

Name	Instruction
Gas	According to need, users can choose Air, O2 or N2.
Punch Power (%)	The power of punching the steel plate.
Punch Pressure (%)	The pressure of punching the steel plate.
Punch Time-delay	It will take some time to wait for light out when punching.
(ms)	The time is lower, and the speed of punch is faster.
Dunch Hoight (mm)	The laser head drops to the tracking height at a certain
Punch Height (mm)	point, slowing down with a punch time-delay.

Table6-3-1 Technological Parameters Instruction

Waiting Height (mm)	The distance that laser head rises to a point after cutting a
Walting Height (min)	complete graphics.

6.3.2 Normal Configuration Parameters

On the **[** Height Control Parameters **]** page, move cursor to **[** Normal Configuration Parameters **]**, press **[** Enter **]**. Then press direction keys to move cursor, press **[** \leftarrow **] [** \rightarrow **]** to modify options, press number keys to modify parameters, and press **[** Enter **]** to save settings.

Figure 6-3-3 Normal Configuration Parameters Interface

Normal	Configuration Parameters	2018.8.27 10:35
	Sensitive level 1-Leve	l(Maximum)
	Sticking Plate Time-Delay(ms)	0200
	Close-Blow-Distance(mm)	0010.0

Name	Instruction
	The sensitivity of detecting steel plate:
	The first level is the highest, the fourth level is the lowest.
Sensitive Level	Overtop: The laser head rises frequently, and the panel
Sensitive Level	displays sticking plate signal with alarm.
	Low over: The laser head doesn't rise.
	You can modify the level according to need.
	Too short: The laser head rise immediately.
Sticking Plate	Too Long: The laser head doesn't rise.
Time-Delay (ms) You can modify the time according to need, we su	
	200 - 300ms.
Close-Blow-Distance	After the laser head completes cutting, it will go an idle
(mm)	distance, then turn off the air.

Table6-3-2 Normal Configuration Parameters Instruction

6.3.3 Z-Axis Motion Parameters

On the **[** Height Control Parameters] page, move cursor to **[** Z-Axis Motion Parameters] and press **[** Enter]. Then press direction keys to move cursor, press number keys to modify parameters, and press **[** Enter] to save setting.

Figure 6-3-4 Z-Axis Motion Parameters Interface

lotion Parameters	2018.8.27 10:35
Tracking Speed (mm/s)	0080.0
Up Speed (mm/s)	0100.0
Start Speed (mm/s)	010.0
Min Accel (mm/s2)	0100
Max Accel (mm/s2)	02000
Jerk (10000mm/s3)	10.0
	Up Speed (mm/s) Start Speed (mm/s) Min Accel (mm/s2) Max Accel (mm/s2)

Table6-3-3 Z-Axis Motion Parameters Instruction

Name	Instruction
Tracking Speed (mm/s)	The speed of tracking rising and falling.
Up speed(mm/s)	The rising speed of laser head.
Start Speed (mm/s)	The initial speed of a laser head from rest to motion.
Min Accel	The minimum acceleration value of the motion axis when it
(mm/s2)	increases or decreases speed in units of 50 or 100 at a time.
Max Accel	The maximum acceleration value of the motion axis when it
(mm/s2)	increases or decreases speed in units of 500 at a time (under

	normal circumstances the factory default value can work well,	
	also it can be modified according to your need).	
Jerk	The change of acceleration increases or decreases in units of	
(10000mm/s3)	10000 at a time.	

6.3.4 Floating Head Calibration

Before cutting, you must do floating head calibration. During calibration, the calibration distance must be more than 20mm. Otherwise, the calibration will fail.

On the [Height Control Parameters] page, move cursor to [Floating Head Calibration] and press [Enter] to calibrate.

Figure6-3-5 Calibrating

Laser Motion Controller TF-6225	2018.8.27	10:35
Calibrating		

Figure6-3-6 Calibrate OK

Laser Motion Controller TF-6225	2018.8.27	10:35
Calibrate OK!		
Calibrate ON:		

Figure6-3-7 Calibrate Fail

Laser Motion Controller TF-6225	2018.8.27	10:35
Danga Limital		
Range Limite!		

6.4 Motion Parameters Settings

On the main page, press [Menu] and move cursor to [Motion Parameters Settings], press [Enter] to enter *Motion Parameters Settings* page. Press direction keys to move cursor and press number keys to modify parameters, press [Enter] to save settings.

Fiugre6-4-1 Motion Parameters Settings Interface

Motion Parameters	2018.8.27 10:35
➡ Space Speed (mm/s)	0300.0
Cut Jerk (10000mm/s3)	06.0
Space Jerk (10000mm/s3)	10.0
Min Acc (mm/s2)	300
Engrave Acc (mm/s2)	10000
Start Speed (mm/s)	10.0
Speed Factor	3.0

The settings of these parameter items will affect the cutting effect, please

adjust according to your requirements.

Table6-4-1 Motion Parameters Instruction

Name	Instruction
Space Speed	The movement speed of laser head when there is no laser
(mm/s)	output.
Cut Jerk	The variation of cutting acc increases or decreases in unit of 10

Т

(mm/s3)	thousand each time.	
Space Jerk	The variation of movement acc when there is no laser output	
(mm/s3)	and it increases or decreases in unit of 10 thousand each time.	
Min Acc	The acceleration of laser head when it turns and this value	
(mm/s2)	increases or decreases in unit of 50 or 100 each time.	
Engrave Acc	The variation of engraving speed and it is only effective to	
(mm/s2)	engrave.	
Start Speed	The initial speed of laser head from rest to motion.	
(mm/s)		
	Parameter changes throughout the system. We suggest that	
	lower speed is going to be filled in with 0.5 or 1, while regular	
Speed Factor	speed with 2 and high speed with 3 or 4. This option should be	
	filled in with 0.05 when cutting acrylic or wood. It also has an	
	impact on smoothness when turning.	

During cutting process, if the actual cutting speed is far less than the working speed users have set, it indicates that the **[**Cut Jerk**]** is set too small, so that the laser head cannot reach the set working speed quickly. If the actual cutting speed is relatively fast, the cutting line will jitter, this case indicates that the **[**Cut Jerk**]** is set too high and the parameter value should be reduced. In the same way, if the **[**Space Jerk**]** is set too small, the speed of laser head will not reach the set speed when there is no laser

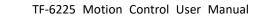
output. If the parameter is set too large, the initial position of cutting (after the laser head moving without laser) will jitter.

The start speed is the initial speed of the laser head from rest to start movement. If the cutting line is too thick at the initial position of cutting, it indicates that the parameter value is too small. If the line jitters at the initial position of cutting, this parameter value is set too large.

The speed factor controls the speed of turning during cutting. If the cutting line is too thick when turning, the parameter is too small. If the cutting line is too thin when turning and the graphics cannot be cut completely, this case indicates that this parameter value is set too large, users should set a smaller value.

The **[**Engrave ACC**]** is the change rate of speed during engraving. This parameter is only valid during engraving. During the engraving process, if the space distance of laser head is too large, then the **[**Engrave ACC**]** is set too small and should be adjusted appropriately. If the space distance of laser head is too small and the edge of graphics is not carved completely, it indicates that the **[**Engrave ACC**]** is set too large and should be reduced appropriately.

6.5 Common Parameters Settings


On the main page, press [Menu] and move cursor to [Common Parameters Settings], press [Enter].

Fiugre6-5 Common Parameters Settings Interface

Common Params Setting	2018.8.27 10:35
 O1.Work Mode O2.Common Parameters O3.Axis Speed parameters O4.Rotate Engraving&Cutting O5.CCD Config 	

6.5.1 Work Mode

On the *Common Params Settings* page, move cursor to **[**Work Mode **]** and press **[**Enter **]**. Press direction keys to move cursor, press **[** \leftarrow **] [** \rightarrow **]** to modify options and press **[**Enter **]** to save settings.

Fiugre6-5-1 Common Parameters Settings Interface

ode	2018.8.27 10:35
Go Origin After Reset	Enable
Origin Mode	Key Origin
GoBack Position	Current Origin
Blow While Pulse Laser	Enable
	LINDIC
	Origin Mode GoBack Position

Table6-5-1 Work Mode Instruction

Name	Instruction
Go Origin After	Enable : the laser head will be back to Origin after resetting. Disable : the laser head will stay at the machine origin point
Reset	(zero point) after reset.
	Current Position: keep the current position of laser head and
	set this position as origin point to start cutting.
	Key Origin: press panel 【Origin】 button after the laser head
Origin Mode	moved to the chosen position.
	Soft Origin: set the origin point when drawing a file on
	LaserCAD software.
	Machine Zero As Origin: set the machine zero point as origin

	point.	
	Current Position: laser head will stay at where task finished.	
Go Back Position	Current Origin: go back to Origin point after finishing work.	
GO BACK POSITION	Zero Coord: laser head goes back to machine zero point since	
	all finished.	
Blow While Pulse	Enable or disable the function.	
Laser		

6.5.2 Common Parameters

On the *Common Params Settings* page, move cursor to **C** Common Parameters **D** and press **C** Enter **D**. Press direction keys to move cursor and press number keys to modify parameters, press **C** Enter **D** to save settings.

Fiugre6-5-2 Common Parameters Interface

on Parameters	2018.8.27 10:35
AutoFocus Distance (mm)	00.0
KeyMove' Speed (mm/s)	200.0
RunBox' Speed (mm/s)	200.0
CutBox' Speed (mm/s)	050.0
Blow Open Delay (s)	0.00
Blow Close Delay (s)	0.00
	KeyMove' Speed (mm/s) RunBox' Speed (mm/s) CutBox' Speed (mm/s) Blow Open Delay (s)

WWW.SZTROCEN.COM

Name	Instruction	
Auto Focus Distance	The distance between the laser head and working	
(mm)	platform.	
Key Move Speed	The motion speed of axis when press the direction keys on	
(mm/s)	panel.	
Run Box Speed	The speed at which the laser head runs along the outer	
(mm/s)	frame of graphics without laser output.	
Cut Box Speed	The speed at which the laser head cuts along the outer	
(mm/s)	frame of graphics.	
	The period between laser head optical output and air	
Blow Open Delay(s)	/(s) blowing started.	
	The period between laser head optical output stopped and	
Blow Close Delay(s)	air blowing stopped.	

Table6-5-2 Common Parameters Instruction

6.5.3 Axis Speed Parameters

On the *Common Params Settings* page, move cursor to **(**Axis Speed Parameters **)** and press **(**Enter **)**. Press direction keys to move cursor and press number keys to modify parameters, press **(**Enter **)** to save settings.

Fiugre6-5-3 Axis Speed Parameters Interface

Axis Spe	eed Parameters	2018.8.27 10:35
-	U Work Speed (mm/s)	00.0
	XY Home Speed (mm/s)	050.0
	Z Home Speed (mm/s)	040.0
	U Home Speed (mm/s)	050.0

Table6-5-3 Axis Speed Parameters Instruction

Name	Instruction	
U Work Speed		
(mm/s)	The work speed of U axis.	
XY Home Speed		
(mm/s)	The reset speed of XY axis.	
Z Home Speed	The reset speed of Z axis.	
(mm/s)		
U Home Speed	The most encoded LL evia	
(mm/s)	The reset speed of U axis.	

6.5.4 Rotate Engraving & Cutting

On the *Common Params Settings* page, move cursor to [Rotate Engraving & Cutting] and press [Enter]. Press direction keys to move cursor, press $[\leftarrow] [\rightarrow]$ to modify options and press number keys to modify parameters, press [Enter] to save settings.

Fiugre6-5-4 Rotate Engraving & Cutting Interface

Rotate Engrav	ving&Cutting	2018.8.27 10:35
➡ Rota	ry	Disable
	ry Axis	X
Pulse	e Count Per Rotate	010000
Curre	ent Diameter(mm)	100.0

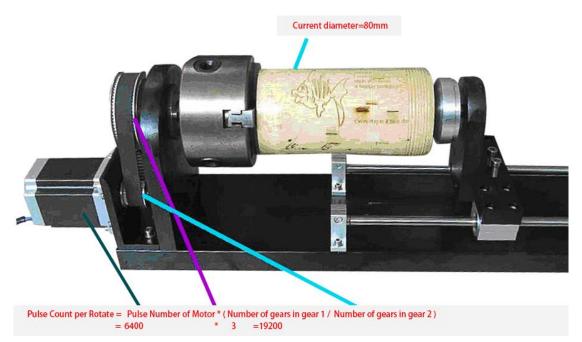
Table6-5-4 Rotate Engraving & Cutting Instruction

Name	Instruction
Rotary	Enable or Disable rotary engraving function.
Rotary Axis	The axis which rotary engraving uses.
Pulse Count Per	The pulse parameters for the motor to make the rotary axis
Rotate	rotate one circle.

Current Diameter	
(mm)	The diameter of the material being processed.

After enable the **[**Rotary **]** function, reset the machine, the panel prompts "Rotary is Enabled!". If the current machine does not support the rotate engraving function, the distance per pulse of rotary axis will change, and the machine cannot cut the graphics normally. After turning off the function, reset the machine again, users do not need to set axis parameters (like distance per pulse) the machine can work normally.

Fiugre6-5-5 Enable Rotate Engraving & Cutting Function


Laser Motion Controller TF-6225	2018.8.27 10:35
System Resetting (Rotary is Enabled!)	

Rotate engraving includes fixture type and roller type, as shown in Figure 6-5-6/6-5-7. The fixture rotate engraving cutting only needs to input the pulse count per rotate and current diameter. The calculation formula of pulse count per rotate is as follows:

Pulse Count per Rotate = Pulse Number of Motor * (Number of Gears in Gear1 /

Number of Gears in Gear2)

Figure6-5-6 Fixture Rotate Engraving

Users should adjust distance per pulse of rotary axis for roller type rotate engraving & cutting (Pulse count per rotate is noneffective). Take X axis as rotary axis as example.

- 1. Wrap a layer of paper around the roller.
- 2. In the computer software LaserCAD, draw A straight line section with fixed length as "A" (less than the current cutting object girth).
- 3. Press [Start/Pause] key to cut the line on the paper.
- 4. Take the same length of the cut trace along the roller with one wool or other convenient object, and measure the length of this wool segment as "B" accurately with a ruler.
- 5. Enter the *X Axis Parameters* interface, move the cursor to **[**Distance

per Pulse], press [Enter] key to enter the *To Calculate the Pulse Distance* interface, fill A into the [Expected Length] option, fill B into the [Actual Length] option, and click [Enter] key to calculate the distance per pulse of X axis (rotary axis).

Figure6-5-7 Roller Rotate Engraving & Cutting

6.5.5 CCD Config

On the *Common Params Settings* page, move cursor to (CCD Config) and press (Enter). Press $(\uparrow) (\downarrow)$ to move cursor, press $(\frown) (\downarrow)$ to modify options and press (Enter) to save settings.

Figure6-5-8 CCD Config

CCD Config	2018.8.27 10:35
CCD Fun Connect Type	Disable Network

Table6-5-5 CCD Config Instruction

Name	Instruction	
CCD Fun	The switch of CCD function.	
Connect Type	Set USB or network connection type.	

6.6 Network Settings

On the main page, press 【Menu】, move cursor to 【Network Settings】 and press 【Enter】. Press direction keys to move cursor, press number keys to modify parameters and press 【Enter】 to save settings.

Network Setting	2018.8.27 10:35
➡ IP Part1	192
IP Part2	168
IP Part3	008
IP Part4	008

Figure6-6-1 Network Settings

The default IP address of mainboard is 192.168.8.8. When connecting the main board and PC terminal through network cable, the computer IP should be modified to make the computer IP address and IP address of the main board in the same network segment. For example, the computer IP address can be set to 192.168.8.28.

Based on the Windows7 system, users can modify the native IP address in the following ways. First, open the Control Panel, select Network and Internet options, and click View Network Status and Tasks. Then, doubleclick the Local Connection, click the Property button, and double-click the

TCP/IPv4 option to open the IP address modification interface. Finally, input the corresponding IP address, click OK button to save, other parameters do not need to fill in.

_			
○○ - ¥ •	控制面板 🕨 网络和 Internet 🕨 网络和共享中	P心 47 搜索控制面板	Q
文件(F) 编辑(E)			
🔋 本地连接 状态		Internet 协议版本 4 (TCP/IPv4) 属性	8 ×
常规	网络 共享 注接时使用: ③ Realtek PCIe GBE Family Controlle	常规 如果网络支持此功能,则可以获取自动指派的 IP 设置。 您需要从网络系统管理员处获得适当的 IP 设置。	否则,
IPv4 连接: IPv6 连接: 媒体状态:	此连接使用下列项目 (0):	恐需要从网络系统管理贝处获得适当的 11 设立。 ● 自动获得 1P 地址 @)	
持续时间: 速度:	 ✓ ● Microsoft 网络客户端 ✓ ● QoS 数据包计划程序 ✓ ● Microsoft 网络的文件和打印机共享 	 ● 使用下面的 IP 地址(S): IP 地址(I): 192.168.8.2 	
	 ✓ · Isturnet 协议版本 6 (ICP/IP.6) ✓ ▲ Internet 协议版本 4 (ICP/IP.4) ✓ ▲ 链路层拓扑发现映射器 I/0 驱动器 	子阿掩码(U): 255.255.255.0 默认网关(D): 1	
活动 ——— 	 ✓ ▲ 链路层拓扑发现响应程序 安装 00< 卸载 00 	● 自动获得 DNS 服务器地址 (2) ● 使用下面的 DNS 服务器地址 (2):	
字节:	描述 TCP/IP。该协议是默认的广域网络协议, 的相互连接的网络上的通讯。	首选 DNS 服务器 (2): 备用 DNS 服务器 (<u>A</u>):	
			级心
	确定	确定	取消

Fiugre6-6-2 Modify IP Address

6.7 Language

On the main page, press [Menu] and move cursor to [Language], press [Enter]. Press [\leftarrow] [\rightarrow] to change language and press [Enter] to save settings. TF-6225 now supports 3 kinds of languages, Simplified Chinese, English and German.

Fiugre6-7-1 Language Interface

6.8 System Version

On the main page, press [Menu] and move cursor to [System Version],

press [Enter] to see the system information.

If the encryption or decryption of the mainboard is successful, the product ID will change.

WWW.SZTROCEN.COM

Fiugre6-8-1 System Version Interface

System	Version	2018.8.27 10:35	
	Product Name	TF-6225	
	Product ID	0F019033 00000000	
	Version	2.18.11.8	
-	User authorization code		

Move cursor to **[**User authorization code **]** and press **[**Enter **]**. Press direction keys to move cursor, press number keys to modify parameters and press **[**Enter **]** to save settings.

The user authorization code is used for encryption or decryption. If you don't need encryption, there is no need to modify it. If you need encryption, please see the detail in encryption manual.

Fiugre6-8-2 User Authorization Code Interface

User au	thorization code	2018.8.27 10:35
	Code 1	100000
	Code 2	100000
	Code 3	100000

7. Manufacture Params Settings

On the main page, press [Stop] + [Shift] together, you will see *Manufacture Params Settings* page.

Figure7-1 Manufacture Params Interface

Manufacturer Params Settings	2018.8.27 10:35
 1.Axis Parameters 2.Laser Parameters 3.10 Parameters 4.AutoReset Settings 5.Normal Settings 	

7.1 Axis Parameters

Move cursor to 【Axis Parameters】 and press 【Enter】. Take the X axis parameter setting as an example, other axis parameter settings are the same.

Figure 7-1-1 Axis Parameters Interface

 X Axis Parameters Y Axis Parameters Z Axis Parameters U Axis Parameters
V Axis Parameters
W Axis Parameters

On the X Axis Parameters page, press direction keys to move cursor, press

 $\left(\leftarrow \right) \left(\rightarrow \right)$ to modify options, press number keys to modify parameters

and press [Enter] to save settings.

X Axis Parameters	2018.8.27 10:35
➡ Distance Per Pulse (um)	06.500000
Valid Pulse Edge	Failling Edge
Datum Direction	Negative
Key Direction	Negative
Limit Polarity	Negative
Range (mm)	00500
Start Speed (mm/s)	15.0
Max Acc (mm/s2)	10000
Max Speed (mm/s)	0500.0

Move cursor to [Distance Per Pulse], press [Enter] to enter the To

WWW.SZTROCEN.COM

Calculate the Pulse Distance page. Press direction keys to move cursor, press number keys to modify parameters, and press **[**Enter **]** to calculate the distance per pulse. <u>The calculation of distance per pulse</u>, please refer to the Chapter 3.5 for more details.

Figure7-1-3 Calculate the Distance Per Pulse

To Calculate the pulse Distance	2018.8.27 10:35
Expected Length (mm) Actual Length (mm)	0200.00

Name	Instruction
Distance Per Pulse (um)	The single distance or angle which the motor moves, when the controller sends a pulse signal. If set incorrectly, the graphics will change.
Valid Pulse Edge	Effective values for driver level to change, Falling Edge or Rising Edge.
Datum Direction	The direction in which the machine moves when reset. If set incorrectly, the axis moves against origin direction.
Key Direction	The direction in which the axis moves when press keys on

Table7-1-1 X Axis Parameters Instruction

	the panel. When set incorrectly, the axis moves opposite direction.
Limit Polarity	The control level that limit switch passes to the control panel. When set incorrectly, the limit will fail. If the limit sensor is NPN, the limit polarity is negative. If the limit sensor is PNP, the limit polarity is positive.
Range(mm)	The working range of machine.
Start Speed (mm/s)	The initial speed at which the axis moves from rest to motion.
Max ACC (mm/s2)	The maximum acceleration value of the motion axis when the axis increases or decreases speed.
Max Speed (mm/s)	The maximum speed which the motion axis supports.

7.2 Laser Parameters

Figure 7-2-1 Laser Parameters Interface

-	Laser Mode	Normal Tube
	PWM Frequency (hz)	20000
	Max Power (%)	98
	RF Min Power (%)	0.0
	Water Protect(IN5)	Disable

Table7-2-1 Laser Parameters Instruction

Name	Instruction
Laser Mode	Laser tube type: CO2 Glass Tube, RF tube.
PWM Frequency (Hz)	Set the pulse frequency of control signal used by laser.
Max Power (%)	The maximum power of laser tube. The maximum power value set by user can't be higher than this value and the laser power is displayed as a percentage.
RF Min Power (%)	The min power of RF laser. (refer to the manual of RF laser)
Water Protect(IN5)	Water protection switch. If enable this function, the machine will stop working when the machine detects the signal of water stopping.

7.3 I/O Parameters

On the *Manufacture Params Settings* page, move cursor to **(**IO Parameters **)** and press **(**Enter **)**. Press direction keys to move cursor, press

 $\mbox{[} \leftarrow \mbox{]} \mbox{[} \rightarrow \mbox{]}$ to modify options and press $\mbox{[} \mbox{Enter} \mbox{]}$ to save settings.

Figure7-3-1 I/O Parameters Interface

IO Parameters	2018.8.27 10:35
➡ Foot Switch(IN2)	Disable
Open Protection(IN1)	Disable
Servo Error Check(IN3)	Disable
Input Valid Level	Low Level

Table7-3-1 I/O Parameters Instruction

Name	Instruction	
Foot Switch	Enable or disable the foot switch function.	
Open Protection	Enable or disable the open protection function.	
Servo Error Check	When detects low lovel (zero velto), the extern will close	
(IN3)	When detect a low level (zero volts) , the system will alarn	
Input Valid Level	Set input IO to low level or high level.	

7.4 Auto Reset Settings

On the *Manufacture Params Settings* page, move cursor to **(**Auto Reset Settings **)** and press **(**Enter **)** . Press direction keys to move cursor, press

 $\left\{ \leftarrow \right\} \left\{ \rightarrow \right\}$ to modify options and press $\left\{ \text{ Enter } \right\}$ to save settings.

In general, we suggest users to enable axis AutoReset function, and disable the feed axis AutoReset.

Figure7-4-1 Auto Reset Setting Interface

AutoRes	set Settings	2018.8.27 10:35
-	XY AutoReset	Enable
	Z AutoReset	Disable
	U AutoReset	Disable
	V AutoReset	Disable
	W AutoReset	Disable

Table7-4-1 Auto Reset Settings Instruction

Name	Instruction
XY Auto Reset	If enable this function, when power on or reset the machine,
	the XY axis will reset to origin point.
Z Auto Reset	If enable this function, when power on or reset the machine,
	the Z axis will reset to origin point.

U Auto Reset	If enable this function, when power on or reset the machine,
	the U axis will reset to origin point.
V Auto Reset	If enable this function, when power on or reset the machine,
	the V axis will reset to origin point.
	If enable this function, when power on or reset the machine,
W Auto Reset	the W axis will reset to origin point.

7.5 Normal Settings

On the *Manufacture Params Settings* page, move cursor to [Normal

Settings] and press [Enter]. Press direction keys to move cursor, press

 $\left(\leftarrow \right) \left(\rightarrow \right)$ to modify options and press $\left[$ Enter $\right]$ to save settings.

TF-6225 supports working range limit, users do not need to install hard limiter in general, just set the **[**Range**]** on the axis parameters page.

Figure7-5-1 HardLimit Setting Interface

2018.8.27 10:35
Disable
Disable
Disable
Disable

Table7-5-1 Auto Reset Settings Instruction

Name	Instruction
Z Range Check	Range of Z axis.
X HardLimit	HardLimit switch of X axis. If use HardLimit, enable the function
	here.

Y HardLimit	HardLimit switch of Y axis. If use HardLimit, enable the function
Thataclinit	here.
Z HardLimit	HardLimit switch of Z axis. If use HardLimit, enable the function
	here.

If the Z-range check is Disable, when the machine loses steps, there will no sticking plate alarm. And the Z axis coordinate is always "0" and no change.

8. FQA

- The top bar displays local date and time. The date and time can be modified, which requires the cooperation of encryption software. If the time changes to 0.0.0, it means the battery in the panel has run out of power and can't set password for control card. The clock doesn't support power off relay function.
- 2. When the file name is in Chinese, it can only show 4 Chinese characters at most, and they are in common Chinese character library. A file name can display up to 8 characters when it uses number or English characters.
- 3. Pulse distance can't be modified.

When the pulse distance value of any axis is close to or less than 1, the pulse distance can't be adjusted and is always 1. The recommended pulse distance value is 5 or more.

4. Wrong laser mode.

When the power of loading graphics is larger and the power of cutting is smaller, it indicates the laser mode is wrong. Please reset the correct laser mode.

5. The alarm signal of the servo drive available in the system is IN3, which is generally effective at low level.

Appendix 1. Wiring Diagram of Servo Driver

1. Panasonic A5 High Speed Pulse Wiring Diagram

	TF-6225 Servo Control Interface			Panasonic 50PInt	
Signal	PIN			PIN	Signal
DIR	1] [44	PULSH1
PUL	2	<u> </u>		 45	PULSH2
DC 5V	3			 46	SIGNH1
		-		 47	SIGNH2

Figure 1-1 Panasonic A5 High Speed Pulse Wiring Diagram

Figure 1-2 Panasonic A5 Low Speed Pulse Wiring Diagram

TF-6225 Servo Control Interface

Panasonic MINAS-A 50P Interface

Signal	PIN	PIN	Signal
DIR	1	3	PULSH1
PUL	2	 4	PULSH2
DC 5V	3	 5	SIGN1
		6	SIGN2

WWW.SZTROCEN.COM

Mode	Value	Instruction
Pr001	0	Control mode, must be set to position mode.
Pr007	3	Must be "Pulse + Direction" mode.
Pr005	1	 High-speed pulse connection mode, the parameter is set to "1", and the maximum pulse frequency is 3Mpps. Low speed pulse connection mode, the parameter is set to "0", and the maximum pulse frequency is 500Kpps.

Table1-1 Panasonic A5 Series Basic Setting Parameters

2. Yaskawa Wiring Diagram

Figure 2-1 Yaskawa Wiring Diagram

TF-6225 Servo Control Interface

YaskawaΣSeries 50P Interface

S	ignal	PIN			PIN	Signal
	DIR	1]	7	PULSH
	PUL	2]		8	*PULSH
C	DC 5V	3		_	 11	SIGN
					 12	*SIGN

Mode	Value	Instruction	
Pn000	001X	Position mode.	
Pn00B	None	When single-phase power input, the parameter is set to "0100".	
Pn200	2000H	Positive logic: Pulse + Direction; 0005H negative logic: Pulse + Direction; When the pulse frequency is less than 1Mpps, please select "0000H". When the pulse frequency reaches 1Mpps~4Mpps, please select "2000H".	
Pn50A	8100	Positive rolling side can be driven.	
Pn50B	6548	Negative rolling side can be driven.	

Table2-1 Yaskawa $\boldsymbol{\Sigma}$ Series Basic Setting Parameters

3. Delta A Series High Speed Pulse Wiring Diagram

TF-6225 Se Inte			Delta ASD-A S	50P Interface	
Signal	PIN			PIN	Signal
DIR	1]	38	HPULSE
PUL	2			 29	/HPULSE
DC 5V	3			 46	HSIGN
		-		 40	/HSIGN

Figure 3-1 Delta A Series High Speed Pulse Wiring Diagram

Figure 3-2 Delta A Series Low Speed Pulse Wiring Diagram

TF-6225 Servo Control Intrface

Delta ASD-A 50P Interface

Signal	PIN		PIN	Signal
DIR	1		43	PULSE
PUL	2		41	/PULSE
DC 5V	3	·	36	SIGN
			37	/SIGN

Mode	Value	Instruction
P1-00	1102H	Position control mode, negative logic: "Pulse + Direction". Set the parameter to "1102H" to open the high-speed differential signal, and the maximum pulse frequency is 4Mpps; Set the parameter to "0102H" low-speed pulse signal, and the maximum pulse frequency is 500K.
P1-01	00	Select the location mode controlled by the external instruction.
P2-10	101	DI1 is set to SON servo enablement, and the logic is normally open.
P2-14	102	DI5 is set as ARST clear alarm function, the logic is normally open.
P2-12	007	DO5 is set as ALRM servo alarm function, the logic is normally closed.

Table3-1 Delta ASD-A Series Basic Setting Parameters

4. Sanyo R Series Wiring Diagram

TF	TF-6225 Servo Control Interface			Sanyo R Series 50P Interface	
	Signal	PIN		PIN	Signal
	DIR	1		28	R-PC
	PUL	2		29	<u>R-PC</u>
	DC 5V	3	·	26	F-PC
				27	<u>F-PC</u>

Figure 4-1 Sanyo R Series Wiring Diagram

Table4-1 Sanyo R Series Basic Settings Parameters

Mode	Value	Instruction
SY08	00	Position mode.
Gr8.11	02	Pulse signal mode: Pulse + Direction.
Gr9.00	00	Positive rolling side can be driven.
Gr9.01	00	Negative rolling side can be driven.

5. Schneider 23A High Speed Pulse Wiring Diagram

Figure 5-1 Schneider 23A High Speed Pulse Wiring Diagram

TF	-6225 Servo (Schneider Inter			
	Signal	PIN		PIN	Signal
	DIR	1		38	HPULSE
	PUL	2		29	/HPULSE
	DC 5V	3		46	HSIGN
				40	/HSIGN

Figure 5-2 Schneider 23A Low Speed Pulse Wiring Diagram

TF-6225 Servo Control Interface

Schneider 23A-50P Interface

Signal	PIN			PIN	Signal
DIR	1			 41	HPULSE
PUL	2			 43	/HPULSE
DC 5V	3		-	 37	HSIGN
		-		 36	/HSIGN

Mode	Value	Instruction			
		Position control mode, negative logic: "Pulse +			
		Direction".			
	1102H	Set the parameter to "1102H" to open the high-speed			
P1-00		differential signal, and the maximum pulse frequency is			
		4Mpps;			
		Set the parameter to "0102H" low-speed pulse signal,			
		and the maximum pulse frequency is 500K.			
P1-01 X00		Select the location mode controlled by the external			
F 1-01	700	instruction.			
P2-10	101	Change the servo IN1 to SON function.			
P2-11	0	We do not use IN2 $_{\circ}$			
P2-13~P2-	0	We do not use IN4~IN8。			
17					

Table5-1 Schneider Lexium 23D Series Basic Settings Parameters

6. Fuji A5 Series Wiring Diagram

Figure 6-1 Fuji A5 Series Wiring Diagram

	r		
Signal	PIN	PIN	Signal
DIR	1	7	CA
PUL	2	 8	*CA
DC 5V	3	 20	СВ
		21	*CB

TF-6225 Servo Control Interface

Fuji A5-26P Interface

Table6-1 Fuji ALPHA 5 Series Basic Setting Parameters

Mode	Value	Instruction
PA-101	0	Position control mode.
PA-103	0	Pulse + Direction, the maximum pulse frequency is 1Mpps.

7. Mitsu Series Wiring Diagram

TF	TF-6225 Servo Control Interface			Mistu MR-J3-A 50P Interface		
	Signal	PIN			PIN	Signal
	DIR	1			10	РР
	PUL	2			11	PG
	DC 5V	3			35	NP
			-		36	NG

Figure 7-1 Mitsu J3 Series Wiring Diagram

Figure 7-2 Mitsu E Series Wiring Diagram

TF-6225 Servo Control Interface

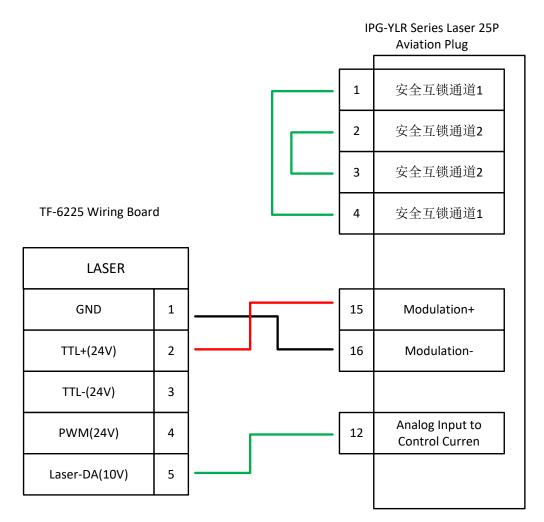
Signal	PIN	PIN
DIR	1	23
PUL	2	22
DC 5V	3	25
		24

Mistu MR-E-A 26P Interface

PIN	Signal
23	РР
22	PG
25	NP
24	NG

Mode	Value	Instruction
PA01	0	Control mode: Position mode.
PA13	0011	Negative logic: Pulse + Direction.

Table7-1 Mitsu MR-J3—A Series Basic Setting Parameters


Notice: The maximum pulse frequency of Mitsu J3 Series is 1Mpps.

Appendix 2. Wiring Diagram of Laser

1. IPG-YLR Series Diagram

Notice: You don't need to connect remote start button, especially when the laser is not well grounded, which may cause laser damage (PWM selects 24V control).

2. SPI-500W R4 Diagram

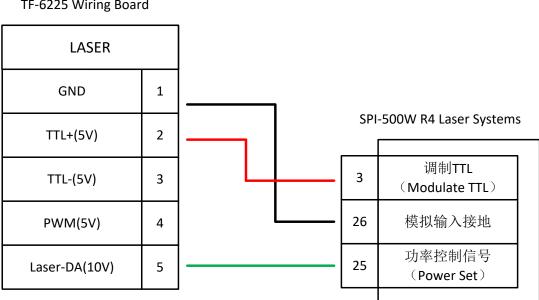
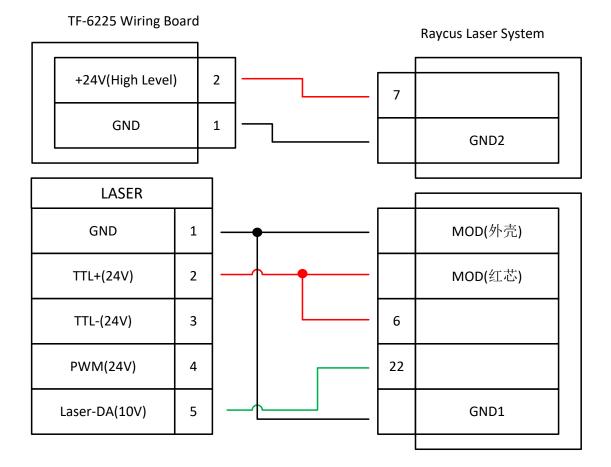


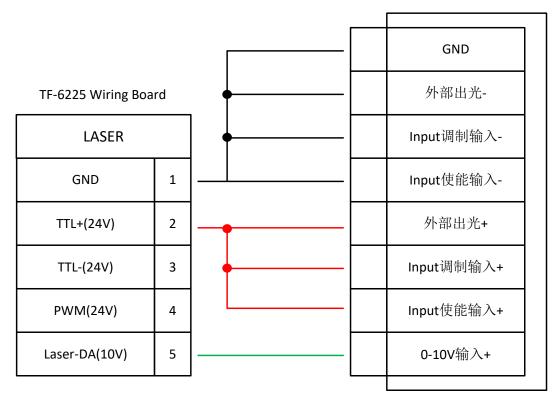
Figure2-1 SPI-500W-R4 Diagram


Notice: If you select Mod Input TTL interface as modulation signal, then you should select PWM 5V for control. If you select I/O 1, then you should select PWM 24V for control.

TF-6225 Wiring Board

3. Raycus Laser Diagram

Figure3-1 Raycus Laser Diagram


Notice: The new Raycus laser uses 24V PWM control signal, the old one uses 5V PWM signal, and only when you switch the new laser key to REM, you can use serial port control. While the old one is set to ON. The PWM interface of the laser will indicate whether it is a 24V control. 5V control method shall be adopted for all controls not marked or marked 5V.

4. Max Laser Diagram

Figure4-1 Max Laser Diagram

Max Fiber Laser Iterlock

