Quite interesting. So 0.02" radial stepover it is, for now.
I can see how the Z axis would skip steps in such a demanding material, however:
- I can’t quite picture why the first helical ramping zone in the M went deeper than the surrounding areas that were milled in the adaptive circular passes. If the Z motor lost steps during the plunge, I would expect the cut to be shallower than designed, but then at whatever max depth it started the post-ramping part of the toolpath it should have proceeded at constant Z from there, because then the Z axis does not move anymore. I’ll have to think about this and take a look at the toolpath simulation to figure this one out.
- Sure the stock Z axis is less rigid that the HDZ, but I wonder if in this specific scenario we are not limited by the Z motor torque anyway. Do you want to try dialing down the forces during the ramping? We could either slow down the helical ramping feedrate, or reduce the ramping angle further, or a combination of both. We could also play with the diameter of the ramping helix.